

AFCI Transmutation Engineering Overview

Michael W. Cappiello
National Technical Director of Transmutation
Engineering, AFCI
Program Manager, Los Alamos National Laboratory
27 August 2003

Outline

- · Transmutation Engineering Objectives
- · FY 2003 Highlights
- · Future Activities

Transmutation Science provides the Engineering Basis Within AFCI

- Develop engineering basis for the transmutation of Plutonium,
 Minor Actinides and long-lived fission products. Support for key program decisions:
 - Fuel Cycle implementation strategy
 - Transmutation System Selection (GenIV Reactor, Transmuter Reactor, ADS)
 - GenIV, Reactor, ADS transmutation efficiency

To Address these Issues Transmutation Engineering is Organized into Three Research Areas

- Fuel Cycle implementation strategy
- Transmutation System Selection (GenIV, Reactors, ADS)
- GenIV, Reactor, ADS transmutation efficiency

Physics

- Nuclear data in thermal, epithermal and fast spectra
- Nuclear Safety data
- Codes and Models

Materials

- Structural material degradation during irradiation: material limits
- Lead-Bismuth Coolant, sensor technology and corrosion mitigation for fast spectrum reactor and ADS

<u>ADS</u>

- Coupling of accelerator to subcritical reactor
- Operation and safety of ADS
- Target technology
- Accelerator Reliability

Transmutation Physics

- · FY 2003 Highlights and Status
- · Future Plans

Transmutation Physics Highlights and Future Plans

FY2003 Highlights:

- Cugnon/Schmidt physics models incorporated in MCNPX
- Am-241 evaluation completed
- Neutron-induced He production data from nickel analyzed and published

Future Plans:

- Iron and Chromium gas production measurements
- Actinide fission and capture measurements and evaluations,
- Statistical and deterministic code improvements,
- Integral data analysis

Materials Coolant Technology

- FY 2003 Highlights
- · Future Plans

LBE Technology Development is Centered at the DELTA Loop

Features:

- Test Bed for Component Development
- Removable Test Sections
- Natural Circulation

Lead Bismuth Advantages

- Non Reactive (leak safety)
- High Temperature Capability
- Natural Circulation (open lattice)
- Beneficial Physics (neutron economy)
- For both Reactor and ADS application

Highlights and Plans

- Loop Conditioning Removal Successful
- Oxygen Sensor Improvements Implemented
- Corrosion testing initiated
- Future Plans include long term corrosion tests and conversion to Lead

Structural Materials

- FY 2003 Highlights
- · Future Plans

Structural Materials Research Relies on Archived Irradiated Samples, and Irradiations at PSI

FY 2003 Highlights

- Mechanical Testing and Microstructure of LANSCE, PSI irradiated samples.
- Data Evaluations published in Rev. 4 of Materials Handbook.
- Collaborations with TRADE and MEGAPIE
- Initiated the atomistic modelling of Helium in a Body-Center Cubic Iron matrix

Future Plans

- Will begin examination of specimens Irradiated in FFTF (Available in FY'04) and PSI
 - Doses up to 120 dpa

0 dpa Mod 9Cr-1Mo

9.8 dpa Mod 9Cr-1Mo

Research Approach to Structural Materials is one of Science Based Prediction: Irradiation Facility Needed

The Proposed Materials Test Station plus a Flux Booster in the ATR Provides the Necessary Fast Neutron Environment for Materials and Fuels

MTS Attributes

- Intense fast spectrum neutron source for development of AFCI transmuter and GenIV reactor materials.
- Closed loops for prototypic coolants and temperatures and "run to failure" capability.
- Transient testing for demonstration of offnormal conditions.

Accelerator Driven Systems

- · Role
- · Issues
- · Activities and Plans

The Role of ADS is to Complement Reactors in a Closed Fuel Cycle

Reactors are cheaper per unit of electricity produced.

ADS is cheaper per unit mass of TRU transmuted.

Reactor Issues:

- LWR, ALWR, Gen IV Reactor Transmutation Role
 - Thermal Spectrum
 - Fast Spectrum
- Acceptable Conversion Ratio for Fast Spectrum System

ADS Issues:

- Operation and Safety
- Reliability
- Target and Materials
- · Cost

MOX Recycle Can Stabilize Pu Inventory, but Minor Actinides Accumulate

Combine with ADS Treatment of SNF and Minor Actinides are Transmuted

Accelerator Driven Systems Development is Driven by International and University Interest

Major International Projects are In Progress:

- MUSE: Coupled external sources to Fast Reactor Critical Facility (CEA-Cadarache)
- · TRADE: Coupled Cyclotron to TRIGA Reactor in Italy
- · MEGAPIE: Megawatt scale spallation source at PSI
- JPARC: Target Test Station and Low Power Sub-Critical Multiplier as part of Accelerator Complex
- · Advanced Cavity Development at CEA-Saclay One US Project in Planning Stage:
- Coupled electron accelerator (Idaho State) to TRIGA (U-Texas and Texas A&M)

US participation in international ADS projects is critical for maintaining expertise in this area

TRADE Will Provide Coupled System Data at Power

The MEGAPIE project will demonstrate a lead-bismuth spallation target at the Paul Shearer Institute in 2005

Coupled Accelerator-Multiplier Experiments are planned by IAC, UT, and TAMU

- IAC will provide an Electron accelerator that can produce 1x10¹² n/s thru gamma,n reactions.
- This will be coupled to thru an existing beam port to one of several reactors available.
- Provides complementary information to the TRADE experiment
- Provides an excellent training facility for students

1 MW TRIGA Reactor at the University of Texas

Activities are Coordinated with 2007 Decision and Generation IV Needs

Advanced Fuel Cycle Initiative - Transmutation Engineering

Summary

- Transmutation Engineering plays an important role in AFCI and provides technical basis for transmutation.
- ADS is an important option and will complement reactor-based transmutation of Plutonium and Minor Actinides.
- Small scale experiments and modeling plays a fundamental role in large scale and end of life predictions.
- Research needs are extensive and will be accomplished thru National Labs and International and University collaborations.